Parameter	Rating	Units
Blocking Voltage	60	$\mathrm{~V}_{\mathrm{p}}$
Load Current	150	mA
Max On-Resistance	16	Ω
LED Current to Operate	1	mA

Features

- Designed for use in security systems complying with EN50130-4
- Only 1 mA of LED current required to operate
- Small 4-Pin SOP Package
- TTL/CMOS Compatible input
- No Moving Parts
- High Reliability
- Arc-Free With No Snubbing Circuits
- $1500 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- No EMI/RFI Generation
- Immune to radiated EM fields
- SMD Pick \& Place, Wave Solderable
- Tape \& Reel Version Available

Applications

- Security
- Passive Infrared Detectors (PIR)
- Data Signalling
- Sensor Circuitry
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation
- Aerospace
- Industrial Controls

Description

The CPC1117N is a miniature 1-Form-B solid state relay in a 4-Pin SOP package that employs optically coupled MOSFET technology to provide $1500 \mathrm{~V}_{\text {rms }}$ of input/output isolation. The efficient MOSFET switches and photovoltaic die use Clare's patented OptoMOS architecture. The optically coupled output is controlled by the input's highly efficient GaAIAs infrared LED using Clare's state of the art double-molded vertical construction packaging to produce one of the world's smallest relays. The CPC1117N offers board space savings of at least 20\% over the competitor's larger 4-Pin SOP relay.

Approvals

- UL Recognized Component: File \# E76270
- EN/IEC 60950-1 Compliant
- CSA Certified Component: Certificate \# 1172007

Ordering Information

Part \#	Description
CPC1117N	4-Pin SOP (100/tube)
CPC1117NTR	4-Pin SOP (2000/reel)

Pin Configuration

Switching Characteristics of Normally Closed (Form B) Devices

e3

Absolute Maximum Ratings

Parameter	Ratings	Units
Blocking Voltage	60	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input Control Current Peak (10ms)	50	mA
Input Power Disipation	1	A
Total Power Dissipation ${ }^{1}$	40	mW
Isolation Voltage, Input to Output	1500	mW
Operational Temperature	-40 to +85	$\mathrm{~V}_{\text {rms }}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

Electrical absolute maximum ratings are at $25^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics @ $25^{\circ} \mathrm{C}$						
Load Current						mA
Continuous ${ }^{1}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	I_{L}	-	-	150	
Peak	$\mathrm{t}=10 \mathrm{~ms}$	$\mathrm{I}_{\text {LPK }}$	-	-	350	
On-Resistance ${ }^{2}$	$\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$	$\mathrm{R}_{\text {ON }}$	-	5	16	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$					ms
Turn-On		$\mathrm{T}_{\text {ON }}$	-	-	1	
Turn-Off		$\mathrm{T}_{\text {OFF }}$	-	-	2	
Output Capacitance	50V; f=1MHz	$\mathrm{C}_{\text {OUT }}$	-	25	-	pF
Input Characteristics @ $25^{\circ} \mathrm{C}$						
Input Control Current ${ }^{3}$	$\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$	I_{F}	-	-	1	mA
Input Dropout Current	-	I_{F}	0.3	0.5	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}	-	-	10	$\mu \mathrm{A}$
Common Characteristics @ $25^{\circ} \mathrm{C}$						
Capacitance Input to Output	-	-	-	1	-	pF

1 Load current derates linearly from $150 \mathrm{~mA} @ 25^{\circ} \mathrm{C}$ to $100 \mathrm{~mA} @ 85^{\circ} \mathrm{C}$.
2 Measurement taken within 1 second of on time.
3 For applications requiring high temperature operation (greater than $60^{\circ} \mathrm{C}$) an LED drive current of 3 mA is recommended.

PERFORMANCE DATA*

CPC1117N
Typical LED Forward Voltage Drop $\left(\mathrm{N}=50, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}\right)$

CPC1117N Typical I_{F} for Switch Operation $\left(\mathrm{N}=50, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}\right)$

CPC1117N
Typical Turn-Off Time

CPC1117N
Typical Blocking Voltage vs. Temperature

CPC1117N
Typical On-Resistance Distribution
$\left(\mathrm{N}=50, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}\right)$

CPC1117N
Typical I_{F} for Switch Dropout
$\left(\mathrm{N}=50, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}\right)$

CPC1117N
Typical Load Current vs. Temperature
($\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$)

CPC1117N
Typical Turn-On vs. Temperature $\left(\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}\right)$

CPC1117N
Typical Blocking Voltage Distribution

CPC1117N
Typical Turn-On Time
$\left(\mathrm{N}=50, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}\right)$

CPC1117N
Typical Leakage vs. Temperature Measured Across Pins 3 \& 4

CPC1117N
Typical Turn-Off vs. Temperature $\left(I_{L}=50 \mathrm{~mA}\right)$

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

PERFORMANCE DATA*

CPC1117N

CPC1117N
Typical On-Resistance vs. Temperature

CPC1117N

CPC1117N

CPC1117N
Typical I_{F} for Switch Operation
vs. Temperature
$\left(\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}\right)$

CPC1117N
Typical Turn-Off vs. LED Forward Current $\left(\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}\right)$

CPC1117N
Typical Load Current vs. Load Voltage

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

MANUFACTURING INFORMATION

Moisture Sensitivity

Clare has characterized the moisture reflow sensitivity of this package, and has determined that this component must be handled in accordance with IPC/JEDEC standard J-STD-033 moisture sensitivity level (MSL), level 3 classification.

Soldering Reflow Profile

For proper assembly, the component must be processed in accordance with the current revision of IPC/JEDEC standard J-STD-020. Failure to follow the recommended guidelines may cause permanent damage to the device resulting in impaired performance and/or a reduced lifetime expectancy.

Washing

Clare does not recommend ultrasonic cleaning or the use of chlorinated solvents.

Mechanical Dimensions

Tape and Reel Packaging for 4-Pin SOP Package

For additional information please visit our website at: www.clare.com
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

